SENSING LABS SAS Cap Oméga Rond-point Benjamin Franklin CS 39521 34960 - Montpellier Cedex 2 France

www.sensing-labs.com www.support.sensing-labs.com

Table of contents

General overview	. 2
Solenoid valves compatibility list	. 3
Provisioning of the device	. 4
On-site installation	. 5
Wiring diagram	. 6
Wiring configuration & validation	. 6
Device positioning	. 7
Device mounting	. 7
Activation of the device	. 8
Deactivation of the device	. 8
Generic requests	. 9
Measure data	. 9
Event data	. 9
General & Configuration requests (for all modes)	10
Mode configuration requests	11
Direct drive mode	11
Periodic pattern mode	11
Battery replacement	12
Technical characteristics	13
ISM Radio bands usage	13
LoRaWan Adaptive Data Rate (ADR)	13
Electrical safety	13
Ambient temperature of use	13
Legals	14

Thank you for your choosing our Senlab product! We hope you will find the instructions on this user manual clear and easy to follow.

General overview

The Senlab SVC (SenlabV) is a smart DC latch solenoid valves driver LoRaWAN[™] radio device.

SenlabV can drive one or two 12V DC latch solenoid(s)

(see table below for compatibility), associated with a water meter.

In addition to valve control feature (open & close), SenlabV allows to get the status of valve via a connected pressure switch, and the index of a connected meter.

- Periodic transmission of status of DC latch solenoid(s) and meter index
- Configuration of valve open cycle via periodic pattern mode
- A direct drive mode allows to send orders to open/close the valve that will be transmitted after an uplink transmission (LoRaWan class A rule).

<u>SLcodec</u> is mandatory to encode/decode SenlabV messages.

Solenoid valves compatibility list

Brand	Reference
BERMAD	S-392-2W
BERMAD	S-402-3W
TECNIDRO	EL-BI (red and black wires)
NETAFIM	Equivalent to S92-2
BACCARA	GEVA 75 9VDC latch 2 wires 3 ways / NO 4 ohms PN16
BACCARA	GEVA 75 9VDC latch 2 wires 3 ways / NC 4 ohms PN10
BACCARA	GEM-SOL 9VDC latch (GEM-B-9 -IL+) 5 ohms
BACCARA	GEM-SOL 12VDC latch 3 ways / NO 13 ohms
NETAFIM	aquaNET plus 1" DC latch
BERMAD	S-392-T-2W
BERMAD	S-392-T-3W
BERMAD	S-982-3W
BACCARA	GEVA 75 9VDC latch 2 wires 3 ways / NO 4 ohms PN10
HUNTER	DC latching solenoid P/N 458200
RAINBIRD	TBOSPSOL
TORO / Irritrol - richdel	DCLS-P /DCL
BACCARA	24VDC latch 3 wires 3 ways NO 23 ohms
BERMAD	S-985-3W
BACCARA	16VDC latch 2 wires 12 ohms 3 ways NO

This list of latch solenoid valves is not exhaustive and corresponds only to solenoid tested by Sensing-Labs.

Provisioning of the device

You have to be sure that your **Senlab device has been commissioned** to be able to reach your LoRaWAN network.

- ✓ If you want specific configuration (appEUI, appKey), please contact your distributor
- Required information for provisioning the device into your LoRa system are listed in the following table:

Warning, don't unprovision device from your system before stopping it! (refer application features to stop the application via RF)

	devEUI	appEUI	appKey	appSkey	NwkSkey	netid	devAddress
Case 1 : OTAA / PUBLIC Typical configuration for Network Operator based architecture or Sensing-Labs SLgateway V2 configuration	x	required	required				
Case 2 : ABP / PUBLIC Typical configuration for Private mono gateway network	x			required	required		Required*

(*) You have to be sure that the associated devAddress is unique for the device into your network.

- ✓ Network & Application configuration of Senlab device can be done:
 - By your distributor (more often)
 - By yourself (if you have your own SLsetting tool)
- Please refer to parameter list described into the Application features chapter to fit to your use case and get a "Plug&Play" device.
- All application configuration can be dynamically adjusted Over The Air (via downlink request)

On-site installation

You can drive 1 or 2 SOLENOID valves, and connect an optional water meter pulse emitter

- ✓ Each valve can be connected with it own pressure switch to check if water pipe is under pressure or not
- ✓ In case, the valve is a 3 wires control, you can connect only 1 valve

Wiring diagram

Please follow the wiring plan below depending on your configuration

Advise:		BROWN BLUE	Valve1 - Vave1 +			
 cut/protect w shortcut and h 	ORANGE GREEN	Valve2 - / Valve 1 N Valve2 +				
 pay attention connection box 	PURPLE YELLOW WHITE	Pressure switch 1 - Pressure switch 1 + Pressure switch 2 -				
		GREY BLACK RED	Pressure switch 2 + Water meter Ground Water meter Pulse			
Pressure switch	The maximal closed state load resiste	or is defined as	s Rc = $1k\Omega$			
(dry contact)	The minimal open state load resistor is defined as Ro = 1M Ω					
	The minimal duration for both the ope	en and closed s	states is 65ms.			
Water Meter compatibility ?	The maximal closed state load resistor	is defined as I	$Rc = 1k\Omega$ (during a p	oulse)		
(dry contact)	The minimal open state load resistor is defined as Ro = $1M\Omega$					

Wiring configuration & validation

We advise to use SLsetting tool to configure your device and check that the wiring is OK.

Select type Se	enlabV to c	onfigur	e your dev	ice in	Log/Tx peri	
applicative	settings	and	launch	the	1 Valve o	
commissioning as for a standard Senlab.						

You can use open & close command SenlabV: in Maintenance tab to validate the control of your valve(s).

	💶 SenlabV 🛛	ATALOG CONFIG	IGURATION	×
۱	Log/Tx per	iods (min) 60	/ 60 redundancy x 1 Random TX?	\checkmark
¢	1 Valve o	control configu	guration:	
	Control of?	Туре	Profil Status delay	
	✓ Valve 1	2 wires	\sim No pressure switch \sim 15	
		o :		
		2 wires	✓ No pressure switch ✓ 15	
		2 wires	No pressure switch 15 OK Cancel SAVE	
[OPEN VALV	2 wires	 No pressure switch < 15 OK Cancel SAVE 1 min EXECUTE command 	
	OPEN VALV	2 wires	 No pressure switch < 15 OK Cancel SAVE 1 min EXECUTE command 	1

Device positioning

You have first to find the best position to your Senlab:

- ✓ Prefer vertical position (*antenna part upwards* as on following pictures)
- Avoid positioning the external cable pulled vertically under the device (prefer coiled positioning or use the rear gutters for outdoor version)
- ✓ Avoid direct sun light exposure or heater system proximity

For best radio performance:

- Positioned the upper part of the device upwardly in a free space area
- avoid positioning the Senlab against a metallic element

Device mounting

Device type	Device mounting
Outdoor versions	Use plastic cable ties with screw mount
	You can also remove black plastic cap and fix the device with M3.5 (max) screws with maximal head diameter of 8mm

Refer to « Application Note Senlab installation » (<u>download link</u>) for full recommendation.

Now the device is well physically installed and plugged, you can start the activation process.

Activation of the device

To activate the Senlab device, you have to use a magnet (min pulling force 1Kg).

- ✓ Remove the magnet as soon as the LED flashes!
- ✓ If activation fails (No solid LED ON 2sec), Senlab will come back in storage mode.
- ✓ After successful activation, device will automatically send its START message

Once activated, if you pass the magnet one more time, the device will indicate its activation status after 3s LED blinking:

--> Solid LED ON 2sec will confirm that device is already activated

Deactivation of the device

If you decide to deactivate Senlab, no more transmissions will be sent \rightarrow That means that you need a physical access to the Senlab to active it again. Many ways are possible:

- Over the Air: by sending the downlink request "stop application" (via your LoRaWAN system)
- > With physical access (with SLsetting tool): by using SLsetting "disconnect" action
- > With physical access (only if "Magnet switch off" has been activated): By holding the magnet during 20 seconds until the LED stay ON for 5 seconds.

Generic requests

Measure data

The following measure are sent periodically in the "datalog_transmission" message.

ID	Description	<u>Type</u>	<u>Unit</u>	<u>Range</u>
raw_index	Number of detected pulses	UINT32	Pulse	0232
	Initialized at 0 when the device is delivered			
valve_1_state	State of valve 1 (if pressure switch activated)	UINT8		0: Close
				1: Open
valve_2_state	State of valve 2 (if pressure switch activated)	UINT8		0: Close
				1: Open
battery_current_level	Battery level of the device	UINT8	%	1100

Event data

Valve events (valve_1_xxx or valve_2_xxx) are transmitted when the valve state change, with the source of change state (uhf, direct or scheduler command). A recall of the last valve event is included in the periodic "datalog_transmission".

• Dependant from the pressure switch activation, "valve_X_unverified", "valve_X_retry" or "valve_X_error" events might also be present.

<u>ID</u>	Description	Туре	Range
start_event	Happens when device is restarted on the field	BOOL	-
valve_1_cmdstate	New state of valve 1	UINT8	0: Close
	Happens each time the valve 1 state change		1: Open
valve_1_source	Reason of valve 1 state change action	STRING	scheduler,
	(present if valve_1_cmdstate notified)		direct, uhf
valve_1_unverified	Event notified if valve 1 has no pressure switch	BOOL	
valve_1_error	Event notified if valve 1 action doesn't succeed to change	BOOL	
	the valve state (if pressure switch activated)		
valve_1_retry	Number of try of the valve action if 1st try doesn't succeed	UINT8	23
valve_2_cmdstate	New state of valve 2	UINT8	0: Close
	Happens each time the valve 2 state change		1: Open
valve_2_source	Reason of valve 2 state change action	STRING	uhf, direct,
	(present if valve_2_cmdstate notified)		scheduler
valve_2_unverified	Event notified if valve 2 has no pressure switch	BOOL	
valve_2_error	Event notified if valve 2 action doesn't succeed to change	BOOL	
	the valve state (if pressure switch activated)		
valve_2_retry	Number of retry of valve action if 1st try doesn't succeed	UINT8	23

General & Configuration requests (for all modes)

Parameter ID	Description	<u>Type</u>	<u>Unit</u>	<u>Range</u>
	Datalog configuration			
les period			Minuto	1 1440
log_period	Device will measure every X minutes	UINT 16	MINUTE	11440 (1440= 24h)
log_tx_period	Device will send logged measure every X minutes (must be a multiple of log, period)	UINT16	Minute	31440
log_tx_random_activation (optional)	Maximize device datalog reliability	BOOL	-	-
redundancy_factor	Log-redundancy Send the X n-1 last log(s) with the last log(s)	UINT8	-	1-12
	Reset battery level			
	(ID = request_reset_battery_level) Must be used after battery replacement only			
NO PARAMETERS				
	Stop application			
	$(ID = request_stop_application)$			
	Warning: activation with magnet will be			
	mandatory to reactivate the device			
NO PARAMETERS				
	Get Version			
	(ID = request_get_version)			
NO PARAMETERS	Ask the device to return it configuration and FW version			
	Write valve profile			
	(ID = request_profile_configuration)			
valve_1_profile	Add this element to configure valve 1 profile			
num_wires	Number of valve wires (2 or 3)	UINT8	-	23
pressure_switch	Pressure switch valve type (optional)	STRING	-	normally_open normally_closed
status_delay	Valve delay for reading the valve status (if pressure switch is set)	UINT8	Second	0255
valve_2_profile	Add this element to configure valve 2 profile			
num_wires	Number of valve wires (2 or 3)	UINT8	-	23
pressure_switch	Pressure switch valve type (optional)	STRING	-	normally_open
status_delay	Valve delay for reading the valve status (if pressure switch is set)	UINT8	Second	0255

Mode configuration requests

Direct drive mode

This mode reserved for tests and Proof-Of-Concept only

The direct drive method allow to transmit a downlink order for changing the DC latch solenoid valves state. Order can be transmitted each time the system receives an uplink message from the SenlabV. The precision and latency of the opened/closed periods are tightly linked to the uplink transmission frequency, and downlink rules allowed by your operator.

Parameter ID	Description	<u>Type</u>	<u>Unit</u>	<u>Range</u>
Execute direct command valve				
	(ID = request_valve_command)			
valve_1_command	Add this element to request an order for valve 1			
valve_state	logical state of valve (1 for open, 0 for closed)	UINT8	-	01
duration	duration of valve state maintain (for open cmd)	UINT16	Minute	165535
valve_2_command	Add this element to request an order for valve 2			
valve_state	logical state of valve (1 for open, 0 for closed)	UINT8	-	01
duration	duration of valve state maintain (for open cmd)	UINT16	Minute	165535

 \rightarrow If a pattern is running, it will be "suspended" during the direct command execution, and will continue after.

Periodic pattern mode

This mode allows to repeat a programmed pattern of "valve open/close" cycle from the reception of the order (ex: to open and close 3 times a day a valve, every day).

Parameter ID		Description	Туре	<u>Unit</u>	<u>Range</u>
		Program a pattern of open slots for a given valve			
		(ID = request_pattern_configuration)			
	valve_id	valve id (1 for valve1, 2 for valve2)	UINT8	-	12
	count	pattern repetition count (0 for infinite)	UINT8	Minute	1255
	duration	pattern duration before repeatition	UINT16	Minute	165535
slots[offset, duration]		Array of open slot (start offset & duration)			
		Sum of offset & duration <= pattern duration			
	offset	offset time to open valve (since the previous slot)	UINT16	Minute	165535
	duration	duration of valve open maintain state	UINT16	Minute	165535
Cancel current se		Cancel current scheduled pattern for a valve			
(ID = request_cancel_pattern)					
	valve_id	valve id (1 for valve1, 2 for valve2)	UINT8	-	12

 \rightarrow When a pattern is cancelled, the corresponding valve will be immediately closed.

Battery replacement

Replacement battery must by a Lithium 3,6V D type

 \rightarrow Contact your distributor to get original battery reference.

SenlabV have the capability to keep activation status during a few minutes, so the process is:

- 1. Open the casing (important: use a screwdriver, not a screw gun)
- 2. Remove the old battery and, during the same minute, put the new battery
- 3. Check if the device activation is still OK (see "Activation of the device" chapter)
- 4. In case activation lost, you need to activate the device again
- 5. Close the casing
- 1. Send the configuration request "request_reset_battery_level" to the device, using your application

ATTENTION:

EN: There is a risk of explosion if the battery is replaced by an incorrect type. Dispose of used batteries according to instructions.

FR: Il y a risque d'explosion si la batterie est remplacée par une batterie de type incorrect. Mettre au rebut les batteries usagées conformément aux instructions.

Technical characteristics

ISM Radio bands usage

Senlab globally communicates over frequencies in the 865-870MHz radio band with a maximum transmission power of 25mW e.r.p (+14dBm e.r.p).

More precisely, the following table describes the different sub-bands, as defined per Annex 1 of ERC Recommendation 70-03 (13 October 2017), which can be used by Senlab:

Frequency Band		Power	Spectrum Access
h1.3	865-868MHz	25mW e.r.p	1% duty-cycle
h1.4	868-868.6MHz	25mW e.r.p	1% duty-cycle

Note that 1% duty-cycle for sub-band h1.3 is allowed by ERC/REC 70-03 Annex 1 Note 5 as its usage is limited to 865-868MHz.

LoRaWan Adaptive Data Rate (ADR)

Senlab devices are compatible with ADR and support from DR0 (SF12) to DR5 (SF7). For any problem with ADR, check the FAQ Senlab on <u>Help Center</u>.

Electrical safety

All circuits are SELV (Safety extra low voltage), including interface circuits which are only used for measurement (signals without power, these circuits are considered LPS).

Ambient temperature of use

From -20°C to +55°C

Legals

SENSING LABS SAS reserves the right to make corrections, modifications, enhancements, improvements and other changes to its products and services at any time and to discontinue any product or service without notice.

SENSING LABS products is not authorized for use in safety-critical applications (such as life support) where a failure of the product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use.

Buyers confirm that they have all necessary expertise in the safety and regulatory ramifications of their applications, acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of the product in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by SENSING LABS SAS.

© 2020 SENSING LABS SAS. All rights reserved. Sensing Labs logo, are registered trademarks of SENSING LABS SAS. All other brands and product names mentioned in this document are the property of their respective holders.

This is a non-contractual document and specifications are subject to change at any time without notice.

For more information about this software: website - <u>http://www.sensing-labs.com</u> support - <u>http://support.sensing-labs.com</u>

<u>Headquarters:</u> SENSING LABS SAS. CAP OMEGA, rond point Benjamin Franklin 34960 Montpellier cedex 02 – France

